Computer software, or simply software, is a part of a computer system that consists of data or computer instructions, in contrast to the physical hardware from which the system is built. In computer science and software engineering, computer software is all information processed by computer systems, programs and data. Computer software includes computer programs, libraries and related non-executable data, such as online documentation or digital media.

Computer hardware and software require each other and neither can be realistically used on its own.

At the lowest level, executable code consists of machine language instructions specific to an individual processor—typically a central processing unit (CPU). A machine language consists of groups of binary values signifying processor instructions that change the state of the computer from its preceding state. For example, an instruction may change the value stored in a particular storage location in the computer—an effect that is not directly observable to the user. An instruction may also (indirectly) cause something to appear on a display of the computer system—a state change which should be visible to the user. The processor carries out the instructions in the order they are provided, unless it is instructed to “jump” to a different instruction, or is interrupted (by now multi-core processors are dominant, where each core can run instructions in order; then, however, each application software runs only on one core by default, but some software has been made to run on many).

The majority of software is written in high-level programming languages that are easier and more efficient for programmers to use because they are closer than machine languages to natural languages. High-level languages are translated into machine language using a compiler or an interpreter or a combination of the two. Software may also be written in a low-level assembly language, which has strong correspondence to the computer’s machine language instructions and is translated into machine language using an assembler.


Users often see things differently from programmers. People who use modern general purpose computers (as opposed to embedded systems, analog computers and supercomputers) usually see three layers of software performing a variety of tasks: platform, application, and user software.

  • Platform software

    The Platform includes the firmware, device drivers, an operating system, and typically a graphical user interface which, in total, allow a user to interact with the computer and its peripherals (associated equipment). Platform software often comes bundled with the computer. On a PC one will usually have the ability to change the platform software.

  • Application software

    Application software or Applications are what most people think of when they think of software. Typical examples include office suites and video games. Application software is often purchased separately from computer hardware. Sometimes applications are bundled with the computer, but that does not change the fact that they run as independent applications. Applications are usually independent programs from the operating system, though they are often tailored for specific platforms. Most users think of compilers, databases, and other “system software” as applications.

  • User-written software

    End-user development tailors systems to meet users’ specific needs. User software include spreadsheet templates and word processor templates. Even email filters are a kind of user software. Users create this software themselves and often overlook how important it is. Depending on how competently the user-written software has been integrated into default application packages, many users may not be aware of the distinction between the original packages, and what has been added by co-workers.